Query Combinators for Clinical Research

Clark C. Evans

cce@clarkevans.com

Kyrylo Simonov
xi@resolvent.net

Prometheus Research, LLC

Draft of June 6, 2018

Abstract

A clinical research workflow involves many par-
ticipants including a primary investigator, a statis-
tician, and an informatician. In current practice,
these participants typically use different tools that
are not integrated. As a result, data sourcing, clin-
ical knowledge, and analysis methods used to pro-
duce clinically relevant findings may be opaque,
hard to discuss, and challenging to reproduce.

This paper shows how a new computational
method, Query Combinators, might be used
to create a data processing environment shared
among the entire clinical research team. For a
given research context, a specialized technical lan-
guage can be created that represents unique data
sources, analysis methods, and domain knowledge.
Research questions can then have an intuitive,
high-level form that can be reasoned about and
discussed. A hypertension medication effective-
ness question is explored to demonstrate how a
specialized database query language could be in-
crementally constructed, applied, and then reused.

1 Introduction

To facilitate the access of institutional data resources
for clinical research projects, medical researchers engage
informaticians who have specialized database skills and
electronic health record expertise [4]. In the clinical re-
search workflow illustrated in Figure 1, an informatician
participates as a member of the research team, generat-
ing data sets from institutional data resources [3]. These
data sets are the output of technical processes includ-
ing database queries as well as data integration and data
cleaning programs.

To generate relevant data sets, an informatician en-
ters an iterative dialogue, or query mediation[2] with re-
search team members. To locate and repurpose relevant
data, the informatician must learn about the principal
investigator’s research context and specialized vocabu-
lary. At the same time, the investigator may need to

revise the research plan to reflect availability of infor-
mation or to consider limitations upon how repurposed
data may be interpreted. Therefore, query mediation is
often a bidirectional communication.

[*j Project

Inception
o

Feasibility
Assessment

)y

issing Data

/ Chart Review

Data Set Results
Generation Discussion

\ Statistical

Analysis

% Principal Investigator
¢ Statistician
& Informatician

Manuscript
Preparation

Figure 1: Clinical Research Workflow at Columbia Uni-
versity’s urology department as observed by Hruby [3]

In this clinical research workflow, generated data sets
and statistical outputs are the working artifacts that
drive research discussion. The technical processes which
generate these artifacts are often a secondary concern.
Typically, the principal investigator has little access to
this technical realm. Inability to name, document, and
encapsulate the complexities encountered in data set
generation and statistical analysis can frustrate discus-
sion and hinder reproducibility.

Complementary to the review of generated data sets
and statistical outputs, what the research team could
have a meaningful discussion of the technical processes
which produce these artifacts? To entice a principal in-
vestigator into a more technical dialogue, informatics
tooling must become much more conceptual, capable
of encapsulating complexity with a reflection of the re-
searcher’s context and vocabulary.

Query Combinators offer a formal yet implementable
computational method to address this unmet need.
Specifically, Query Combinators can be used to com-
pose high-level processes with a nomenclature suitable
to medical research discussion.

In a prior paper[l], Query Combinators were shown
to be rigorously defined, eminently usable, and at least
as powerful as contemporary alternatives such as the
Structured Query Language (SQL) or the "R” dplyrs
package. This paper demonstrates how Query Combi-
nators permit the construction of query languages that
are tailored to specific clinical analysis domains.

2 Hypertensive Drug Efficacy

To demonstrate the application of Query Combinators
to clinical research, this paper describes the process of
converting a researcher’s question into an executable
specification. Consider the following question.

Within 6 months of a hypertension diagno-
sis, when an anti-hypertensive medication was
added or intensified, was there a blood pres-
sure decrease of 5 mmHg or more within 5 days
after the medication adjustment?

There are several concepts densely packed within this
apparently simple question. To capture the nuances of
each concept, a dialogue with the researcher is needed.
The informatician then implements and documents a set
of query combinators that encapsulate these concepts.

Table 2 lists a few combinators relevant to this ques-
tion and abbreviated query mediation notes.

Combinator Query Mediation Notes

hypertension_diagnosis exclude pregnancy &
kidney failure

a product list is provided
new therapy or larger dose
of both systolic & diastolic
change of daily medication
normalize dosage records

across compound products

antihypertensive_medication
added_or_intensified
blood_pressure_decrease
medication_adjustment
normalized_active_ingredient

Table 1: Hypertensive Query Combinators

Although combinators typically reflect the intent and
vocabulary of the investigator, sometimes new concepts
related to data sources or analysis methods are required.
These are also expressed as combinators and given a
name so they can be discussed among research team
members. Let’s presume this researcher is interested
in active ingredients, not compounded pharmaceutical
products as stored in the information system. Hence,
normalized_active_ingredient is defined to mean medica-
tion records that are normalized across compounded
products by active ingredient.

With these combinators defined, the inquiry could be
translated into a high-level query that is written with
formal terminology relevant to the research project.

Query 2.1 (Hypertensive Drug Efficancy).

patient
.medication_adjustment(
normalized_active_ingredient(
antihypertensive_medication))
filter(
added_or_intensified &
during(previous(6months),
patient.hypertension_diagnosis)
:define(
is_effective :=
during(subsequent(5days),
patient.blood_pressure_decrease(5mmHg)))
:group(normalized_active_ingredient)
:select(normalized_active_ingredient,
count(medication_adjustment: filter(is_effective)),

count(medication_adjustment : filter(not(is_effective))))

This query is quite compact and unambiguous. Its
high-level vocabulary and encapsulation of lower-level
concerns permits it to closely follow the research inquiry.

Step 1: For each patient: (a) find the correlated anti-
hypertensive medication records, (b) normalize
those records to return dosage by active ingre-
dient, and then, (¢) compute the adjustments
to that patient’s daily medication regime.

Step 2: Consider medication adjustments that reflect
additions or intensifications; include only those
that have a qualifying hypertension diagnosis
within the previous 6 months.

Step 3: Define what it means to be an effective medica-
tion adjustment: did the patient have a blood
pressure decrease of 5bmmHg within the subse-
quent 5 days?

Step 4: Group these medication adjustments by the
normalized active ingredient and then count the
number of effective and ineffective adjustments.

As this query is elaborated, combinators will be
named, defined, and used to encapsulate data sources,
analysis methods and clinical knowledge. Collectively
these combinators form a shared vocabulary that in-
creases understanding among all team members and
faciltates reuse across a variety of research projects.

3 Thinking in Query Combinators

Before proceeding to the query presented in Section 2,
it is helpful to discuss the reasoning and mathematics
underlying Query Combinators.

For this section, consider a simplified Clinical Re-
search Data Repository (CRDR) with patients and
coded conditions. This database might be described
with a series of statements enumerated in Table 2.

1. This Database has a set of Patient records.

2. Each Patient record has an identifier which uniquely
locates it within the Database.

3. Each Patient record has a mandatory birthdate.

4. Each Patient is associated with a set of Condition
records which represent problems, diagnoses or any
other issues of concern.

5. Each Condition has a mandatory category
which is a SNOMED-CT concept such as
59621000 |Essential hypertension.

6. Each Condition has a mandatory onset to record
approximately when the problem started.

7. Each Condition has an optional abatement to record
if/when the problem went into remission.

Table 2: CRDR Database Description

Information Modeling Approaches

Following are three equivalent information models for
the CRDR database described in Table 2. These models
differ in how they represent entity classes, relationships
between entities, datatypes, and attributes.

Figure 2 shows a standard tabular database model
where information is structured as tables and columns.

Patient Condition
identifier | Pk | Integer — patient_id | Fk | Integer
birthdate | NN | DateTime category | NN | Text

onset | NN | DateTime
PK Primary Key abatement DateTime
FK Foreign Key

NN Not Null

Figure 2: Tabular Model for CRDR

In the tabular model, entity classes, such as Patient
are represented as tables, and attributes, such as
birthdate, as columns. Column datatypes are provided.
Relationships between entity classes are encoded as for-
eign key constraints. In this example, patient_id on the
Condition table refers to identifier on the Patient table.

Query construction with this tabular model is well
supported by a number of languages and tools, including
the Structured Query Language (SQL) and Language

INtegrated Query (LINQ). However, neither SQL nor
LINQ have proven to be a suitable query language for
casual use by domain experts.

Figure 3 shows a functional model where information
is conceptualized as a graph of nodes and arcs.

patient

condition

birthdate category

identifier abatement

) S

Figure 3: Functional Model for CRDR

In this diagram, entity classes and datatypes are rep-
resented as nodes, while attributes and relationships are
represented by arcs between them. The database as a
whole is also represented as a node in this model and
it is connected to entity classes such as Patient with a
relationship arc of the same name, e.g. patient.

This functional diagram makes clear that each at-
tribute and relationship has a certain input and output,
at the head and tail of each arc. Moreover, this unified
treatment of relationships and attributes suggests that
one might traverse data by connecting arcs.

While promising, query construction with this func-
tional model is not well supported. Languages such as
the Functional Query Language (FQL) that are based
on this model have not proven to be practical.

Figure 4 shows an equivalent hierarchical model
where information is visualized as elements in a tree.

H patient

identifier]

condition

category]

Figure 4: Hierarchical Model for CRDR

In this diagram, relationships between entities and at-
tributes are represented as tree elements; entity classes
and data types are implicit. Similar to the functional
model, the database itself is expressly represented, this
time as the root of the tree.

Query construction with this hierarchical model
is popularized by the eXtensible Markup Language
(XML) data format and the excellent, but limited, XML

Path Language (XPath). XPath has proven that path-
based queries, such as count(/patient/condition), are
quite accessible to domain experts.

This hierarchical perspective has been found to match
domain experts’ intuitive understanding of their data,
and thus motivates a new way of thinking about infor-
mation processing. Elements in the hierarchical model
of Figure 4, imply path-based navigation. Further,
these tree elements directly correspond to the arcs of
the functional model as shown in Figure 3.

Query Combinators present a user experience moti-
vated this hierarchical model backed by the power and
flexibility provided by the functional model. This user
experience is further compatible with data that is stored
in a contemporary tabular model.

An Algebra of Queries

Historically, algebras have provided powerful reasoning
frameworks and enabled usable systems. Algebraic ex-
pressions can be incrementally constructed, rearranged,
and reduced to help build meaningful models of reality.

For example, elementary algebra (or Arithmetic) is an
algebra of numbers. This algebra consists of numeric
primitives (0, 1, 2, etc.) and a set of numeric opera-
tions, including operators (x, +, +, etc.) and functions
(sqrt, cos, etc.), that can be used to construct numeric
expressions such as sqrt(49) x (5 + 1).

This familiar algebra of numbers is not the only alge-
bra. For example, in the Relational Algebra upon which
SQL is loosely based, elements are sets and the opera-
tions include restriction, projection, product, union and
difference. Each operation takes one or more sets as an
input and produces a set for its output.

Query Combinators are an algebra of query functions.

This algebra’s elements, or queries, represent rela-
tionships among class entities and datatypes. For ex-
ample, condition in Figure 3 names a query primitive
that, for each Patient record, yields a sequence of corre-
lated Condition records.

This algebra’s operations, or combinators, are ap-
plied to construct query expressions. For example,
count(condition) is a query expression that is con-
structed by applying the count combinator to the
condition query. Observe that count(condition) is itself
a query; for each Patient record, count(condition) yields
the number of correlated Condition records.

Notice that this algebra is significantly different from
the Relational Algebra. The query condition does not
name a table of Condition records; instead, the condition
query is a function from each Patient to a sequence
of associated Condition records. Further, the combi-
nator count does not directly count records. Instead,
the count combinator is used to build queries, such as
count(condition), which do the actual counting.

In particular, Query Combinators are a many-sorted,
or typed algebra. This is different from Arithmetic in
which all elements are numbers and are treated uni-
formly. Every query has a type, or query signature, that
specifies the expected input and output of the query.
For example, the signature of the query condition is
(Patient — Condition™). The output cardinality in a
query signature is singular unless it is either marked as
plural with * or marked as optional with .

This typed algebra of query functions permits a query
processor to automatically track user context, providing
an intuitive yet robust query language.

Query Primitives

This algebra has two kinds of queries: primitives and
expressions. Query primitives, such as condition, are
elementary building blocks; they reflect functional rela-
tionships among data within a given data source.

Consider again the CRDR database described in Ta-
ble 2, perhaps stored in a tabular database as shown in
Figure 2. To interrogate this database with combina-
tors, it must first be converted into a functional form,
as shown in Figure 3. The Database as a whole, entity
classes (such as the Patient table), and scalar types (e.g.
DateTime) become nodes in this graph.

Query primitives are represented as the arcs in this
functional graph. They include the relationship patient
between the Database each Patient entity, the rela-
tionship condition between a Patient and correlated
Condition records, and relationships such as birthdate
between a Patient and a scalar DateTime value.

Table 3 lists the query primitives for the CRDR
presented previously. In this table, each query, such
as condition, is associated with its signature, e.g.
Patient — Condition™.

Primitive Signature

patient Database — Patient”
identifier Patient — Integer
birthdate Patient — DateTime
condition Patient — Condition™
category Condition — Text

onset Condition — DateTime
abatement Condition — DateTime’

Table 3: Query Primitives for CRDR

Constants are also considered primitive queries. For
example, ’Hello World’ is a query that yields the same
scalar value, Hello World, regardless of its input. Hence,
this query has a signature of Any — Text.

When query primitives are arranged hierarchically, as
shown in Figure 4, query signatures, the input and out-
put types of each query, fade into the background. They
become details to be managed by the query processor,

freeing the user to think in terms of relationships and
combinations of relationships that reflect higher-level
domain-specific meaning.

Query Expressions

Query expressions, such as count(condition) are con-
structed by applying combinators, such as count to
queries, such as condition. In particular, count takes
any query and makes a combined query that, for each
input, yields the count of associated outputs.
Combinators, such as count, don’t have signatures,
instead, each has a rule that describes the signature
of the query it constructs based upon the signature of
its inputs. Table 4 shows the signature rule for the
count combinator. When count is applied to any query
f with input A and output B*, the constructed query,
count(f), has an input of A and an output of Integer.

f A— B*
count(f)
Table 4: Count Combinator

A — Integer

By substituting patient for f as shown in Table 5,
the query signature for count(patient) is computed be
Database — Integer. Hence, for a given Database,
count(patient) yields a singular integer value, the num-
ber of Patient records in that database.

patient Database — Patient”

count(patient) Database — Integer

Table 5: count() applied to patient query

Path-based navigation among entities is expressed
as a binary combinator indicated with the period (.).
Consider the patient and condition arcs in Figure 3.
These arcs can be connected to compose a new arc,
patient.condition. This navigation can also be visualized
as traversing down the tree from patient to condition in
the hierarchical model of Figure 4.

More formally, query composition builds a new query
by chaining the output of one as the input of the other.
This composition is permitted when two queries, f and
g, have a shared intermediate type B, as shown in Ta-
ble 6. Thus, f.g is interpreted as g(f(z)) for any z.

f A — B*
g B —C*
f9 A—C*

Table 6: Composition Combinator

For example, when applied to a given Database, the
query patient.condition would feed the output of patient
(a sequence of Patient records) as the input of condition
to produce a sequence of Condition records. This is
shown in Table 7.

Database — Patient”
Patient — Condition®

patient
condition

patient.condition Database — Condition™

Table 7: Composition of patient and condition

Query composition is monadic, that is, outputs are
treated as streams of values. Nested sequences are au-
tomatically flattened. Further, any mandatory value
can be treated as an optional value, and any optional
value can be treated as a sequence of zero or more val-
ues. Monadic composition allows the user to compose
queries without having to be concerned about contain-
ers or cardinality.

Query expressions are algebraic. So long as each
combinator’s rule can be followed, arbitrarily sophis-
ticated expressions can be generated. Since count and
patient.condition are defined, count(patient.condition) is
also a valid query expression in the algebra: it counts
the number of condition records across all patients in
the database. This query’s signature can be automati-
cally computed as Database — Integer.

In this algebra, the order of operations matters.
For example, count(patient.condition) is different from
patient.count(condition). The latter yields a list of inte-
gers, one for each patient. Each integer in this list would
reflect the number of conditions for each enumerated pa-
tient. These subscores can then be used to compute the
average number of conditions across all patient records.

Query 3.1 (Average # of Conditions by Patient).
mean(patient.count(condition))

Additional combinators, such as filter, group, sort,
define, select are used without definition here. They
are explored in the paper by the same authors entitled
Query Combinators[1].

Combinators are Extensible

Query Combinators are completely extensible. There
is nothing special in how count or filter operate within
the query language. Software developers can extend
this query system with any sort of data access adapters,
processing algorithms, or statistical functions.

In particular, any scalar function or operation can be
lifted to a query combinator. For example, addition,
which is a binary operator over numbers, can be con-
verted to a combinator on queries with numeric output.

Another example is a function now() that returns the
current DateTime value. This scalar function can be
lifted to a combinator now() which takes no arguments
and constructs a query; this query would then yield the
current time. The operation of the now() combinator is
once indirect, adapted to cooperating within a higher-
order information processing context.

Domain Specific Query Languages

The logic of Query Combinators permits not only the
rigorous definition of composed queries, but also the
creation of custom, domain specific vocabularies.

Suppose that an informatician would like to conduct
a feasibility assessment to see if the CRDR database
has at least some candidate patients relevant to this
hypertension effectiveness inquiry. A simple test might
be framed as follows:

How many patients, ages 18 or older, have an
active diagnosis of Fssential Hypertension?

The first step is to create the necessary higher-level
combinators: one that defines essential hypertension,
one that computes a patient’s age, and one that tests
for an active diagnosis.

Query 3.2 (Inquiry Concepts).

essential_hypertension := 59621000’
age := years(now() — birthdate)
has_active_diagnosis(z) :=
exists(condition.filter(
category = z
& is_null(abatement)))

First, essential_hypertension is defined to be the
SNOMED-CT concept 59621000. While this is not a
comprehensive test for hypertension, it might be good
enough as a first-pass feasibility check.

Second, age is defined to be the timespan from the
Patient’s birthdate to the system time, truncated to a
yearly resolution. It’s a rather obvious definition, but
there’s no use in letting this logic bleed into the more
critical aspects of the inquiry.

Third, has_active_diagnosis(z) encapsulates the logic
that a patient has an active condition of a particular
code category, represented by the variable z, for which
an abatement has not been entered. This combinator
wraps data model nuances into words that reflect the
inquiry’s use of that model.

With these reusable combinators defined, the trans-
lated query for the inquiry above is succinctly expressed:

Query 3.3 (Adults /w Hypertension).

patient
filter (age >=18
& has_active_diagnosis(
essential_hypertension))

scount

One minor syntax note: with Query Combinators’
pipeline notation, x : f is equivalent to f(x). This al-
lows queries to be written in a sequential rather than
nested manner. For example, count(query) could be
written query : count. This syntax becomes valuable
as queries grow more complex. If a combinator has
more than one argument, then x : f(y) is equivalent
to f(x,y). Hence, filter(patient,age >= 18) could be
written patient:filter(age > 18).

What is most important about this query, and in-
deed the general approach, is that it could be shared,
reviewed, and discussed with the entire clinical research
team. At the top-level, the query is seen to gener-
ally follow the question. Yet, the terms used (age,
essential_hypertension, and has_active_diagnosis) encap-
sulate complexity, can be independently reviewed, and
quite possibly reused in multiple contexts.

With modest training and plenty of examples, casual
domain experts, including medical research assistants
and principal investigators, can be taught to read and
understand these queries. Moreover, informaticians can
customize the query vocabulary to fit research needs.

4 Hypertensive Question

(remainder of paper is being written)

Loading FHIR/SNOMED Data

Hypertension Diagnosis

Anti-Hypertensive Medication

Adjustment

Blood Pressure Decrease

Bibliography

[1] C. C. Evans and K. Simonov. Query combinators.
CoRR arXiv, abs/1702.08409, 2017.

[2] G. Hruby, J. J Cimino, V. Patel, and C. Weng. To-
ward a cognitive task analysis for biomedical query
mediation. 2014:218-22, 04 2014.

[3] G.Hruby, J. McKiernan, S. Bakken, and C. Weng. A A. B. Wilcox, J. Hirschberg, and C. Weng. Char-

centralized research data repository enhances retro- acterization of the biomedical query mediation pro-
spective outcomes research capacity: A case report. cess. AMIA Jt Summits Transl Sci Proc, 2013:89—
20, 01 2013. 93, 2013.

[4] G. W. Hruby, M. R. Boland, J. J. Cimino, J. Gao,

