
DataKnots.jl

an extensible and coherent algebra of query combinators

Clark C. Evans 〈cce@clarkevans.com〉,
Kyrylo Simonov 〈xi@resolvent.net〉
Wed, 24th July, 2019

JuliaCon 2019

Prometheus Research, LLC

Clinical Research Workflow

Project

Inception

Feasibility

Assessment

Missing Data

Chart Review

Data Set

Generation

Statistical

Analysis

Results

Discussion

Results

Dissemination

F

�♣

♣

♣

�

F�♣

F�♣

F Principal Investigator

� Statistician

♣ Informatician

Figure 1: Clinical Research Workflow as inspired from Hruby’s observations at

Columbia University [?] 1

Current Practice: Multiple Query Approaches

Principal Investigator

StatisticianInformatician

Which anti-hypertensive medications are

effective in improving blood pressure?

d=read.csv(...)

...

a.lm=lm(...,data=d)

summary(a.lm)

$r.squared

SELECT *

FROM patient

JOIN observation

ON (...)

WHERE ...

2

An Observational Inquiry

Consider the inquiry, ”Which anti-hypertensive medications are effective

in improving blood pressure?”. This inquiry could be operationalized as:

Within 6 months of a hypertension diagnosis, when an anti-

hypertensive medication was added or intensified, was there a

blood pressure decrease of 5 mmHg or more within 5 days after

the medication adjustment?

3

An Observational Inquiry

Consider the inquiry, ”Which anti-hypertensive medications are effective

in improving blood pressure?”. This inquiry could be operationalized as:

Within 6 months of a hypertension diagnosis, when an anti-

hypertensive medication was added or intensified, was there

a blood pressure decrease of 5 mmHg or more within 5 days

after the medication adjustment?

3

What are the query components?

The first thing to do is convert specialized vocabulary in this inquiry into

query component definitions in a query mediation session.

Component Mediation Notes

hypertension diagnosis exclude pregnancy &

kidney failure

antihypertensive medication a product list is provided

added or intensified new therapy or larger dose

blood pressure decrease of both systolic & diastolic

medication adjustment change of daily medication

active ingredient normalize dosage records

across compound products

Table 1: Anti-hypertensive Query Components

4

Anti-Hypertensive Query

patient.keep(it)

antihypertensive medication

active ingredient

medication adjustment

filter(added or intensified &&

previous(6months).includes(

patient.hypertension diagnosis))

collect(is effective =>

subsequent(5days).includes(

patient.blood pressure decrease(5mmHg)))

group(active ingredient)

{ active ingredient,

count(medication adjustment.filter(is effective)),

count(medication adjustment.filter(not(is effective))) } 5

Thinking in Query Combinators

Tabular Model of Clinical Research Data Repository

Patient

identifier PK Integer

birthdate NN DateTime

Condition

patient id FK Integer

category NN Text

onset NN DateTime

abatement DateTime
PK Primary Key

FK Foreign Key

NN Not Null

Figure 2: Tabular Model for CRDR

6

Hierarchical Model of Clinical Research Data Repository

patient identifier

birthdate

condition category

onset

abatement

Figure 3: Hierarchical Model for CRDR

7

Example Queries

patient identifier

birthdate

condition

• patient

• count(patient)

• patient.condition

• patient.count(condition)

• mean(patient.count(condition))

8

Query Combinator Algebra

Query Combinators are an algebra of query functions.

• This algebra’s elements, or queries, represent relationships among

class entities and datatypes.

• This algebra’s operations, or combinators, are applied to construct

query expressions.

Query expressions, such as count(condition) are constructed by applying

combinators, such as count to queries, such as condition.

9

Functional Model

Database

Patient Condition

Integer DateTime Text

patient

category

identifier

onsetbirthdate

abatement

condition

Figure 4: Functional Model for CRDR

10

Query Primitives

Primitive Signature

patient Database→ Patient∗

identifier Patient→ Integer

birthdate Patient→ DateTime

condition Patient→ Condition∗

category Condition→ Text

onset Condition→ DateTime

abatement Condition→ DateTime?

Table 2: Query Primitives for CRDR

11

The Count Combinator

f A→ B∗

count(f) A→ Integer

patient Database→ Patient∗

count(patient) Database→ Integer

condition Patient→ Condition∗

count(condition) Patient→ Integer

12

The Composition Combinator

f A→ B∗

g B → C∗

f .g A→ C∗

patient Database→ Patient∗

condition Patient→ Condition∗

patient.condition Database→ Condition∗

condition Patient→ Condition∗

category Condition→ Text∗

condition.category Patient→ Text∗

13

Example: Feasibility Assessment

Suppose that an informatician would like to conduct a feasibility

assessment to see if the CRDR database has at least some candidate

patients relevant to this hypertension effectiveness inquiry.

How many patients, ages 18 or older, have an active diagnosis of

Essential Hypertension?

14

Components of Feasibility Assessment

How many patients, ages 18 or older, have an active diagnosis of

Essential Hypertension?

Component Definition

essential hypertension ’59621000’

age years(now()− birthdate)

has active diagnosis(x) exists(condition.filter(
category = x &&
is null(abatement)))

Table 3: Component Definitions for Feasibility Assessment

15

Adults /w Hypertension

How many patients, ages 18 or older, have an active diagnosis of

Essential Hypertension?

patient

filter (age >= 18 &&

has active diagnosis(

essential hypertension))

count()

16

Architecture & Julia Interface

DataKnots.jl has Four Conceptual Levels

Combi-

nators

Operators of the query lan-

guage; they build queries

Queries
Elements of the query lan-

guage; they extend pipelines

Pipelines
Computations that transform

knots; serves as query plan

Data-

Knots

Representation of the

data set as an infinite tree

17

No Macros Required

The DataKnots macro syntax is completely optional. Primitive queries

that navigate a data source can be constructed via Get.

• Patient = Get(:PATIENT)

• Condition = Get(:CONDITION)

In native Julia syntax, combinators like Count are functions that return

queries. The >> operator is overloaded for query composition.

• Count(Patient)

• Patient >> Condition

• Patient >> Count(Condition)

18

Automatic Lifting of Functions

Constants can be lifted as primitive queries that produce a constant

result. Functions can be lifted to combinators. Vectors are lifted to

queries returning plural results.

• Lift("hello world")

• titlecase.(Lift("hello world"))

• Lift(1:3)

Functions taking vector arguments are lifted to aggregate combinators.

Functions returning vectors are lifted to queries returning plural results.

• mean.(Patient >> Count(Condition))

19

Novel Queries & Combinators

Novel primitive queries, that access new data sources, such as web

resources or specific data sources such as FHIR or HDF5, can be written

in Julia using the DataKnots and Pipelines APIs.

Novel data transformations, that cannot be simply lifted from julia

functions, can also be written using Julia to extend the query language.

There are many functions, such as Group and the like which simply

cannot be lifted.

The query plan, or data pipeline view, of a query can be shown to see

how it would perform at an implementation level.

20

See DataKnots.jl on GitHub

There is an implementation of Query Combinators for the Julia

Language, called DataKnots.jl.

• this implementation is MIT/Apache licensed

• it includes an in-memory, column-oriented database

• it has adapters to CSV (and soon XML, JSON)

• essential query operators are implemented

• Julia statistics can be lifted to a combinator

• an adapter to SQL datasources is in progress!

https://github.com/rbt-lang/DataKnots.jl

21

	Thinking in Query Combinators
	Architecture & Julia Interface

