
DataKnots: A Framework for Building Domain Specific Query Languages

Clark C. Evans; Kyrylo Simonov, PhD

DataKnots1 is an extensible data processing framework. It lets collaborative research teams build their own domain
specific query languages (DSQLs) that reflect their conceptual models and vocabularies. DataKnots is based upon
an algebraic framework, Query Combinators2, which formalizes how query components can be defined and
combined in a consistent manner. While DataKnots includes standard query operations (group, filter, sum, etc.), they
are not given special treatment over domain specific operations. One can add new query components by
encapsulating existing queries, lifting Julia language subroutines to queries, and authoring novel transformations
using a pipeline construction interface. DataKnots is a platform for creating an ecosystem of mutually interoperable
DSQLs, so that collaborative research groups could easily customize their query systems to fit the kinds of data
sources and analysis methods they use.

To show that ergonomic, high-performance DSQLs could be rapidly constructed, we built a DSQL inspired by the
Clinical Quality Language (CQL) and used it to implement CMS124v7 “Cervical Cancer Screening”. Specifically,
we constructed a processing pipeline that converts JSON encoded Fast Healthcare Interoperability Resources
(FHIR) to its clinical quality measure (CQM) score. The pipeline loads JSON to an in-memory FHIR representation,
converts to an intermediate Quality Data Model (QDM) form, then implements CMS124v7 logic to calculate the
CQM score. This layered approach separates concerns, giving us a place to put encoding logic specific to FHIR that
doesn’t belong in a CQM, as well as a place to isolate electronic health record vendor differences.

DataKnots4FHIR3 took 27 working days to implement. New measures can now be added with incremental effort.
We benchmarked it using synthetic patient bundles from Synthea. Computation of CMS124v7 over 1,000 patients
averages 76ms per patient with a single core on a i7-4770 desktop computer, while the reference implementation5

averaged 607ms per patient. Our bottleneck is memory usage, with a high-water mark of 11mb per patient. JSON
parsing is expensive (17ms/patient). These benchmarks motivate future work on a custom JSON parser, suitable to
our vectorized representation, that extracts FHIR lazily based upon the exact fields needed for a given computation.

CQL is a highly-targeted DSQL, created specifically for implementing clinical quality measures and decision logic.
Using DataKnots, we were able to rapidly construct a DSQL that matches CQL with comparable functionality and
ergonomics. Moreover, we were able to represent not only a CQM calculation, but the entire processing pipeline,
including conversion from JSON to FHIR and conversion of FHIR to QDM. For this application, DataKnots was
extended with relevant data types, including concepts and value-sets from clinical vocabularies. Informed by clinical
quality measure guidelines, we also defined a datetime interval with operators, such as and_previous and during.
Critically, these domain specific operators are treated no differently from built-in operations such as filter. Because
its formalized approach permits new query operators to be seamlessly integrated, DataKnots can be used to build
distinct DSQLs, each having a conceptual model and vocabulary responsive to its research domain and audience.

define "PapTest Within 5 Years"
 ("Pap Test with Results" PapTestOver30YearsOld
 with ["Patient Characteristic Birthdate"] BirthDate
 such that Global."CalendarAgeInYearsAt"(
 BirthDate.birthDatetime,
 start of PapTestOver30YearsOld.relevantPeriod)>= 30
 and PapTestOver30YearsOld.relevantPeriod 5 years or
 less before end of "Measurement Period”)

@define PapTestWithin5Years =
 let birthDate => PatientCharacteristicBirthdate.
 BirthDateTime,
 previous5years => interval(MeasurePeriod.end).
 and_previous(5years)
 PapTestWithResults.
 filter(years_between(relevantPeriod.start, birthDate) >= 30
 && relevantPeriod.during(previous5years))
 end

CMS124v7 fragment using CQL with QDM
https://ecqi.healthit.gov/sites/default/files/ecqm/measures/CMS124v7.html

an equivalent using DataKnots – cms124.jl
https://github.com/rbt-lang/DataKnots4FHIR.jl/blob/master/doc/src/cms124v7.jl

DataKnots is MIT/Apache licensed, is well documented, and has extensive regression tests. Our approach has
multiple applications: we have additionally prototyped a DSQL for Observational Health Data Sciences and
Informatics (OHDSI) cohort construction4. We are actively searching for a pilot project.

1. Evans CC, Simonov K, DataKnots Query System for Julia (htt ps://github.com/rbt-lang/DataKnots.j l/)
2. Evans CC, Simonov K, Query Combinators (https://arxiv.org/abs/1702.08409)
3. Evans CC, DataKnots4FHIR : Query Adapters for FHIR (https://github.com/rbt-lang/DataKnots4FHIR.jl/)
4. Evans CC, Simonov K, DSQLs for Medical Research (https://www.biorxiv.org/content/10.1101/737619v2)
5. Database Consulting Group, CQL Measure Processing Component (https://github.com/DBCG/cqf-ruler)

https://ecqi.healthit.gov/sites/default/files/ecqm/measures/CMS124v7.html
https://github.com/DBCG/cqf-ruler
https://www.biorxiv.org/content/10.1101/737619v2
https://github.com/rbt-lang/DataKnots4FHIR.jl/
https://arxiv.org/abs/1702.08409
https://github.com/rbt-lang/DataKnots.jl
https://github.com/rbt-lang/DataKnots.jl
https://github.com/rbt-lang/DataKnots.jl
https://github.com/rbt-lang/DataKnots4FHIR.jl/blob/master/doc/src/cms124v7.jl

